Run
10458897

Run 10458897

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.Trunc atedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components126
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.002129608376848724
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"lsqr"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.00042885852707139825
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_algorithm"randomized"
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_components215
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_iter62
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_random_state42
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_tol0.0
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.996 ± 0.0026
Per class
Cross-validation details (10-fold Crossvalidation)
0.9386 ± 0.0262
Per class
Cross-validation details (10-fold Crossvalidation)
0.9302 ± 0.0299
Cross-validation details (10-fold Crossvalidation)
0.9353 ± 0.0278
Cross-validation details (10-fold Crossvalidation)
0.0143 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.938 ± 0.0266
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.9409 ± 0.0225
Per class
Cross-validation details (10-fold Crossvalidation)
0.938 ± 0.0266
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.0723 ± 0.0293
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.1111 ± 0.0252
Cross-validation details (10-fold Crossvalidation)
0.3536 ± 0.0803
Cross-validation details (10-fold Crossvalidation)
0.938 ± 0.0266
Cross-validation details (10-fold Crossvalidation)