Run
10458894

Run 10458894

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=skle arn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.0002255198743598161
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon12.123480890002762
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.9692207401834774
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter2098
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change89
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.3568457194894785
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.854590874883759
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.decomposition._pca.PCA(1)_copyfalse
sklearn.decomposition._pca.PCA(1)_iterated_power"auto"
sklearn.decomposition._pca.PCA(1)_n_components97
sklearn.decomposition._pca.PCA(1)_random_state42
sklearn.decomposition._pca.PCA(1)_svd_solver"arpack"
sklearn.decomposition._pca.PCA(1)_tol2.555864144346261
sklearn.decomposition._pca.PCA(1)_whitentrue
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4583 ± 0.0157
Per class
Cross-validation details (10-fold Crossvalidation)
0.0378 ± 0.0281
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0833 ± 0.0314
Cross-validation details (10-fold Crossvalidation)
-0.0146 ± 0.0294
Cross-validation details (10-fold Crossvalidation)
0.214 ± 0.0062
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.037 ± 0.0279
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.0396 ± 0.0304
Per class
Cross-validation details (10-fold Crossvalidation)
0.037 ± 0.0279
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
1.0833 ± 0.0314
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.4626 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
1.472 ± 0.0215
Cross-validation details (10-fold Crossvalidation)
0.037 ± 0.0279
Cross-validation details (10-fold Crossvalidation)