Run
10458865

Run 10458865

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=skle arn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.04805479411076065
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon40.65500354077767
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.8240974660554702
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.31150745358675164
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter122
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change59
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.9442536999844863
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.11199205513007404
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.impute._knn.KNNImputer(1)_add_indicatorfalse
sklearn.impute._knn.KNNImputer(1)_copyfalse
sklearn.impute._knn.KNNImputer(1)_metric"nan_euclidean"
sklearn.impute._knn.KNNImputer(1)_missing_valuesNaN
sklearn.impute._knn.KNNImputer(1)_n_neighbors8
sklearn.impute._knn.KNNImputer(1)_weights"distance"
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9172 ± 0.009
Per class
Cross-validation details (10-fold Crossvalidation)
0.8544 ± 0.0151
Per class
Cross-validation details (10-fold Crossvalidation)
0.8344 ± 0.018
Cross-validation details (10-fold Crossvalidation)
0.8449 ± 0.0169
Cross-validation details (10-fold Crossvalidation)
0.0327 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.8528 ± 0.016
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.8574 ± 0.0149
Per class
Cross-validation details (10-fold Crossvalidation)
0.8528 ± 0.016
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.1656 ± 0.018
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.1809 ± 0.0101
Cross-validation details (10-fold Crossvalidation)
0.5755 ± 0.032
Cross-validation details (10-fold Crossvalidation)
0.8528 ± 0.016
Cross-validation details (10-fold Crossvalidation)