Run
10458248

Run 10458248

Task 49 (Supervised Classification) tic-tac-toe Uploaded 19-05-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,randomforestcla ssifier=sklearn.ensemble.forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_valuenull
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(11)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(16)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(16)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(16)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_sparsetrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_verbosefalse
sklearn.ensemble.forest.RandomForestClassifier(64)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(64)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(64)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(64)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(64)_max_features0.13891783454814322
sklearn.ensemble.forest.RandomForestClassifier(64)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(64)_min_impurity_decrease0
sklearn.ensemble.forest.RandomForestClassifier(64)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(64)_min_samples_leaf2
sklearn.ensemble.forest.RandomForestClassifier(64)_min_samples_split9
sklearn.ensemble.forest.RandomForestClassifier(64)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(64)_n_estimators300
sklearn.ensemble.forest.RandomForestClassifier(64)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(64)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(64)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(64)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(64)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9989 ± 0.0012
Per class
Cross-validation details (10-fold Crossvalidation)
0.9748 ± 0.019
Per class
Cross-validation details (10-fold Crossvalidation)
0.9439 ± 0.0424
Cross-validation details (10-fold Crossvalidation)
0.5323 ± 0.0136
Cross-validation details (10-fold Crossvalidation)
0.2476 ± 0.0048
Cross-validation details (10-fold Crossvalidation)
0.453 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.9749 ± 0.0185
Cross-validation details (10-fold Crossvalidation)
958
Per class
Cross-validation details (10-fold Crossvalidation)
0.9755 ± 0.0171
Per class
Cross-validation details (10-fold Crossvalidation)
0.9749 ± 0.0185
Cross-validation details (10-fold Crossvalidation)
0.931 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
0.5466 ± 0.0108
Cross-validation details (10-fold Crossvalidation)
0.4759 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.278 ± 0.0081
Cross-validation details (10-fold Crossvalidation)
0.5841 ± 0.0171
Cross-validation details (10-fold Crossvalidation)
0.9653 ± 0.0271
Cross-validation details (10-fold Crossvalidation)