Run
10458185

Run 10458185

Task 9981 (Supervised Classification) cnae-9 Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.ensemble._hist_grad ient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.MultinomialNB(6)_alpha0.00016818589237359367
sklearn.naive_bayes.MultinomialNB(6)_class_priornull
sklearn.naive_bayes.MultinomialNB(6)_fit_priorfalse
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization7.967017525948909e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.3032829354334063
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins86
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth578
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter210
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes374
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf93
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change11
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"jaccard_weighted"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.19161694225330983
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.1428210974214784
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9877 ± 0.0122
Per class
Cross-validation details (10-fold Crossvalidation)
0.9455 ± 0.0237
Per class
Cross-validation details (10-fold Crossvalidation)
0.9385 ± 0.0271
Cross-validation details (10-fold Crossvalidation)
0.9419 ± 0.0251
Cross-validation details (10-fold Crossvalidation)
0.0135 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.9454 ± 0.0241
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.946 ± 0.02
Per class
Cross-validation details (10-fold Crossvalidation)
0.9454 ± 0.0241
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.0682 ± 0.0281
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.1045 ± 0.0232
Cross-validation details (10-fold Crossvalidation)
0.3327 ± 0.0739
Cross-validation details (10-fold Crossvalidation)
0.9454 ± 0.0241
Cross-validation details (10-fold Crossvalidation)