Run
10458179

Run 10458179

Task 9981 (Supervised Classification) cnae-9 Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,ste p_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradient BoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization0.10527349966729496
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.40118674984597014
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins201
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth762
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter886
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes492
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf256
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change64
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"roc_auc_ovr"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.07428192107417037
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.0574051197882227
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.decomposition._fastica.FastICA(1)_algorithm"parallel"
sklearn.decomposition._fastica.FastICA(1)_fun"cube"
sklearn.decomposition._fastica.FastICA(1)_fun_argsnull
sklearn.decomposition._fastica.FastICA(1)_max_iter196
sklearn.decomposition._fastica.FastICA(1)_n_components701
sklearn.decomposition._fastica.FastICA(1)_random_state42
sklearn.decomposition._fastica.FastICA(1)_tol0.4661113316817489
sklearn.decomposition._fastica.FastICA(1)_w_initnull
sklearn.decomposition._fastica.FastICA(1)_whitenfalse
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9948 ± 0.0024
Per class
Cross-validation details (10-fold Crossvalidation)
0.9187 ± 0.0343
Per class
Cross-validation details (10-fold Crossvalidation)
0.9083 ± 0.0389
Cross-validation details (10-fold Crossvalidation)
0.9088 ± 0.0274
Cross-validation details (10-fold Crossvalidation)
0.0242 ± 0.0057
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.9185 ± 0.0346
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.9192 ± 0.0326
Per class
Cross-validation details (10-fold Crossvalidation)
0.9185 ± 0.0346
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.1225 ± 0.0291
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.1145 ± 0.0191
Cross-validation details (10-fold Crossvalidation)
0.3645 ± 0.0606
Cross-validation details (10-fold Crossvalidation)
0.9185 ± 0.0346
Cross-validation details (10-fold Crossvalidation)