Run
10458149

Run 10458149

Task 9981 (Supervised Classification) cnae-9 Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklea rn.naive_bayes.BernoulliNB)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.BernoulliNB(11)_alpha127.47342270718303
sklearn.naive_bayes.BernoulliNB(11)_binarize0.0
sklearn.naive_bayes.BernoulliNB(11)_class_priornull
sklearn.naive_bayes.BernoulliNB(11)_fit_priortrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha9.839884610730221e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon8.064896460116406
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.31145309795241954
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.020913960395655164
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_epsilon_insensitive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter2228
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change64
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.5033100832598345
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.640119869986664
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.7480048996498346
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.naive_bayes.BernoulliNB)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.naive_bayes.BernoulliNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.naive_bayes.BernoulliNB)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9744 ± 0.007
Per class
Cross-validation details (10-fold Crossvalidation)
0.8225 ± 0.0338
Per class
Cross-validation details (10-fold Crossvalidation)
0.7948 ± 0.039
Cross-validation details (10-fold Crossvalidation)
0.4467 ± 0.0168
Cross-validation details (10-fold Crossvalidation)
0.1467 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.8176 ± 0.0347
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.8558 ± 0.0288
Per class
Cross-validation details (10-fold Crossvalidation)
0.8176 ± 0.0347
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.7425 ± 0.0135
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.2446 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
0.7784 ± 0.0125
Cross-validation details (10-fold Crossvalidation)
0.8176 ± 0.0347
Cross-validation details (10-fold Crossvalidation)