Run
10457986

Run 10457986

Task 9981 (Supervised Classification) cnae-9 Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.svm._ classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstrapfalse
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.9871370747573344
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth755
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features3
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes700
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.9282269125604015
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.37488544602019525
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.1705895896954163
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.32237480407380903
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.07932021219828272
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators1185
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.svm._classes.SVC(4)_C1.247825878607968
sklearn.svm._classes.SVC(4)_break_tiestrue
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef0-22.616429978138296
sklearn.svm._classes.SVC(4)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(4)_degree5
sklearn.svm._classes.SVC(4)_gamma0.00012668165195389572
sklearn.svm._classes.SVC(4)_kernel"poly"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilityfalse
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingtrue
sklearn.svm._classes.SVC(4)_tol0.020831590041147475
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9505 ± 0.0174
Per class
Cross-validation details (10-fold Crossvalidation)
0.9122 ± 0.0311
Per class
Cross-validation details (10-fold Crossvalidation)
0.901 ± 0.0348
Cross-validation details (10-fold Crossvalidation)
0.9073 ± 0.0326
Cross-validation details (10-fold Crossvalidation)
0.0195 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.912 ± 0.0309
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.9156 ± 0.0289
Per class
Cross-validation details (10-fold Crossvalidation)
0.912 ± 0.0309
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.099 ± 0.0348
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.1398 ± 0.0237
Cross-validation details (10-fold Crossvalidation)
0.4449 ± 0.0753
Cross-validation details (10-fold Crossvalidation)
0.912 ± 0.0309
Cross-validation details (10-fold Crossvalidation)