Run
10457917

Run 10457917

Task 9900 (Supervised Classification) abalone Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative .FeatureAgglomeration,step_2=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.svm._classes.SVC(4)_C4701.139687583768
sklearn.svm._classes.SVC(4)_break_tiesfalse
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef00.0
sklearn.svm._classes.SVC(4)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(4)_degree3
sklearn.svm._classes.SVC(4)_gamma0.00158950617990576
sklearn.svm._classes.SVC(4)_kernel"rbf"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilitytrue
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingfalse
sklearn.svm._classes.SVC(4)_tol1.973820101307523e-05
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_affinity"l2"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_compute_full_treefalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_connectivitynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_distance_thresholdnull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_linkage"average"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_memorynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_n_clusters8
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_pooling_func{"oml-python:serialized_object": "function", "value": "numpy.median"}
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative.FeatureAgglomeration,step_2=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative.FeatureAgglomeration,step_2=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative.FeatureAgglomeration,step_2=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8347 ± 0.0093
Per class
Cross-validation details (10-fold Crossvalidation)
0.6512 ± 0.022
Per class
Cross-validation details (10-fold Crossvalidation)
0.4816 ± 0.0308
Cross-validation details (10-fold Crossvalidation)
0.4047 ± 0.015
Cross-validation details (10-fold Crossvalidation)
0.2998 ± 0.0064
Cross-validation details (10-fold Crossvalidation)
0.4441 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6548 ± 0.0204
Cross-validation details (10-fold Crossvalidation)
4177
Per class
Cross-validation details (10-fold Crossvalidation)
0.6498 ± 0.0227
Per class
Cross-validation details (10-fold Crossvalidation)
0.6548 ± 0.0204
Cross-validation details (10-fold Crossvalidation)
1.584 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.6751 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
0.4712 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3851 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
0.8171 ± 0.0108
Cross-validation details (10-fold Crossvalidation)
0.6511 ± 0.021
Cross-validation details (10-fold Crossvalidation)