Run
10457910

Run 10457910

Task 9900 (Supervised Classification) abalone Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEs timator(estimator=sklearn.naive_bayes.MultinomialNB),step_2=sklearn.ensembl e._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier) (1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.MultinomialNB(6)_alpha0.0007828550350588097
sklearn.naive_bayes.MultinomialNB(6)_class_priornull
sklearn.naive_bayes.MultinomialNB(6)_fit_priorfalse
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization1.2115154313612712e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.0007266625535704513
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins97
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth10
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter307
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes1166
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf442
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change44
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"f1_micro"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.07701227889650983
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.216060476413498
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.7941 ± 0.0096
Per class
Cross-validation details (10-fold Crossvalidation)
0.3485 ± 0.0224
Cross-validation details (10-fold Crossvalidation)
0.03 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.437 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.4441 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5719 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
4177
Per class
Cross-validation details (10-fold Crossvalidation)
0.5719 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
1.584 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.984 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.4712 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4639 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.9844 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.5574 ± 0.0142
Cross-validation details (10-fold Crossvalidation)