Run
10457894

Run 10457894

Task 9900 (Supervised Classification) abalone Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEs timator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_2=s klearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.699358538416415
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth2
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features1
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes2632
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.607218149190663
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.3657220427146824
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.1264439283468626
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.43708644603334823
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.004100238181699634
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators586
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scoretrue
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components166
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.30825329079213415
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"eigen"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.012504000829593409
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7803 ± 0.0168
Per class
Cross-validation details (10-fold Crossvalidation)
0.5683 ± 0.021
Per class
Cross-validation details (10-fold Crossvalidation)
0.3751 ± 0.031
Cross-validation details (10-fold Crossvalidation)
0.3274 ± 0.0156
Cross-validation details (10-fold Crossvalidation)
0.3325 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.4441 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5851 ± 0.0207
Cross-validation details (10-fold Crossvalidation)
4177
Per class
Cross-validation details (10-fold Crossvalidation)
0.5668 ± 0.024
Per class
Cross-validation details (10-fold Crossvalidation)
0.5851 ± 0.0207
Cross-validation details (10-fold Crossvalidation)
1.584 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.7487 ± 0.0156
Cross-validation details (10-fold Crossvalidation)
0.4712 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4129 ± 0.0065
Cross-validation details (10-fold Crossvalidation)
0.8763 ± 0.0137
Cross-validation details (10-fold Crossvalidation)
0.5792 ± 0.0206
Cross-validation details (10-fold Crossvalidation)