Run
10457852

Run 10457852

Task 9900 (Supervised Classification) abalone Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.discriminant_analysis. LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components350
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.18593248555748276
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"eigen"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.0004018215426891119
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7841 ± 0.0163
Per class
Cross-validation details (10-fold Crossvalidation)
0.5717 ± 0.0194
Per class
Cross-validation details (10-fold Crossvalidation)
0.3804 ± 0.0285
Cross-validation details (10-fold Crossvalidation)
0.3152 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.3383 ± 0.0064
Cross-validation details (10-fold Crossvalidation)
0.4441 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5887 ± 0.019
Cross-validation details (10-fold Crossvalidation)
4177
Per class
Cross-validation details (10-fold Crossvalidation)
0.5705 ± 0.0215
Per class
Cross-validation details (10-fold Crossvalidation)
0.5887 ± 0.019
Cross-validation details (10-fold Crossvalidation)
1.584 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.7617 ± 0.0145
Cross-validation details (10-fold Crossvalidation)
0.4712 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4112 ± 0.006
Cross-validation details (10-fold Crossvalidation)
0.8726 ± 0.0127
Cross-validation details (10-fold Crossvalidation)
0.5827 ± 0.019
Cross-validation details (10-fold Crossvalidation)