Run
10457847

Run 10457847

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.feature_selection._uni variate_selection.SelectPercentile,step_2=sklearn.discriminant_analysis.Lin earDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components98
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkagenull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"svd"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.19514756071981376
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_percentile45.68163980797266
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.f_classif"}
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.feature_selection._univariate_selection.SelectPercentile,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.feature_selection._univariate_selection.SelectPercentile,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.feature_selection._univariate_selection.SelectPercentile,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9493 ± 0.0135
Per class
Cross-validation details (10-fold Crossvalidation)
0.8513 ± 0.0206
Per class
Cross-validation details (10-fold Crossvalidation)
0.5345 ± 0.0707
Cross-validation details (10-fold Crossvalidation)
0.5091 ± 0.0264
Cross-validation details (10-fold Crossvalidation)
0.1742 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.8711 ± 0.0152
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.8839 ± 0.0174
Per class
Cross-validation details (10-fold Crossvalidation)
0.8711 ± 0.0152
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.5047 ± 0.0215
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.2934 ± 0.0118
Cross-validation details (10-fold Crossvalidation)
0.7067 ± 0.0302
Cross-validation details (10-fold Crossvalidation)
0.7146 ± 0.0347
Cross-validation details (10-fold Crossvalidation)