Run
10457826

Run 10457826

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_ analysis.FactorAnalysis,step_2=sklearn.ensemble._hist_gradient_boosting.gra dient_boosting.HistGradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization1.7707909643844535e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.35342114705718275
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins18
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth15
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter319
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes1029
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf247
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change62
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"recall_macro"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.0991667556772853
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.05176211194752615
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_copyfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_iterated_power25
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_max_iter3602
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_n_components33
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_noise_variance_initnull
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_random_state42
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_svd_method"randomized"
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_tol2.664935959187247
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9454 ± 0.0149
Per class
Cross-validation details (10-fold Crossvalidation)
0.9043 ± 0.0208
Per class
Cross-validation details (10-fold Crossvalidation)
0.729 ± 0.0579
Cross-validation details (10-fold Crossvalidation)
0.5797 ± 0.0468
Cross-validation details (10-fold Crossvalidation)
0.1404 ± 0.0111
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.9022 ± 0.0215
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.9081 ± 0.0204
Per class
Cross-validation details (10-fold Crossvalidation)
0.9022 ± 0.0215
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.4067 ± 0.0318
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.2661 ± 0.018
Cross-validation details (10-fold Crossvalidation)
0.6408 ± 0.0423
Cross-validation details (10-fold Crossvalidation)
0.8813 ± 0.0328
Cross-validation details (10-fold Crossvalidation)