Run
10457809

Run 10457809

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imput ation.ImputationComponent,step_1=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_2=sklearn.linear_model._stochast ic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.0308853506646613e-06
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon95229.25547942231
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.538846904924954
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.34681857792850745
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_loss"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter488144953
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change62
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t33.006210753675674
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.20970581992279816
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.5831465551288081
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
automl.components.data_preprocessing.imputation.ImputationComponent(1)_add_indicatortrue
automl.components.data_preprocessing.imputation.ImputationComponent(1)_missing_valuesNaN
automl.components.data_preprocessing.imputation.ImputationComponent(1)_strategy"mean"
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5504 ± 0.1755
Per class
Cross-validation details (10-fold Crossvalidation)
0.5922 ± 0.1081
Per class
Cross-validation details (10-fold Crossvalidation)
0.0723 ± 0.2401
Cross-validation details (10-fold Crossvalidation)
-0.4798 ± 0.3952
Cross-validation details (10-fold Crossvalidation)
0.4455 ± 0.1179
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.5545 ± 0.1179
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.6887 ± 0.1262
Per class
Cross-validation details (10-fold Crossvalidation)
0.5545 ± 0.1179
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
1.291 ± 0.3437
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.6675 ± 0.083
Cross-validation details (10-fold Crossvalidation)
1.6075 ± 0.2017
Cross-validation details (10-fold Crossvalidation)
0.5504 ± 0.1755
Cross-validation details (10-fold Crossvalidation)