Run
10457785

Run 10457785

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.Qu antileTransformer,step_2=sklearn.linear_model._stochastic_gradient.SGDClass ifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha5.1267847861687436e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon49.503401910514725
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.8739740812037142
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.8665533884717341
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter253
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change68
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.6731697326731524
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.6611428044763479
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.2910215801283855
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.QuantileTransformer(1)_copyfalse
sklearn.preprocessing._data.QuantileTransformer(1)_ignore_implicit_zerosfalse
sklearn.preprocessing._data.QuantileTransformer(1)_n_quantiles184
sklearn.preprocessing._data.QuantileTransformer(1)_output_distribution"uniform"
sklearn.preprocessing._data.QuantileTransformer(1)_random_state42
sklearn.preprocessing._data.QuantileTransformer(1)_subsample14381822
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.QuantileTransformer,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.QuantileTransformer,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.QuantileTransformer,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.895 ± 0.0337
Per class
Cross-validation details (10-fold Crossvalidation)
0.8994 ± 0.0269
Per class
Cross-validation details (10-fold Crossvalidation)
0.7224 ± 0.0696
Cross-validation details (10-fold Crossvalidation)
0.6523 ± 0.0945
Cross-validation details (10-fold Crossvalidation)
0.1047 ± 0.0288
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.8953 ± 0.0288
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.9103 ± 0.023
Per class
Cross-validation details (10-fold Crossvalidation)
0.8953 ± 0.0288
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.3033 ± 0.0828
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.3235 ± 0.0434
Cross-validation details (10-fold Crossvalidation)
0.7792 ± 0.1033
Cross-validation details (10-fold Crossvalidation)
0.895 ± 0.0337
Cross-validation details (10-fold Crossvalidation)