Run
10457776

Run 10457776

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.No rmalizer,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.027426825434734573
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon259740.8626624395
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.5534378451909819
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.6863696665933131
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter395335370
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change79
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t62.114257086960286
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.3952580198218709
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.7362282995889572
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.Normalizer(1)_copyfalse
sklearn.preprocessing._data.Normalizer(1)_norm"l1"
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.Normalizer,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.Normalizer,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._data.Normalizer,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.1295 ± 0.0279
Per class
Cross-validation details (10-fold Crossvalidation)
0.1535 ± 0.0341
Per class
Cross-validation details (10-fold Crossvalidation)
-0.4128 ± 0.0306
Cross-validation details (10-fold Crossvalidation)
-1.905 ± 0.0911
Cross-validation details (10-fold Crossvalidation)
0.8746 ± 0.0277
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.1254 ± 0.0277
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.2681 ± 0.0478
Per class
Cross-validation details (10-fold Crossvalidation)
0.1254 ± 0.0277
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
2.5343 ± 0.0791
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.9352 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
2.2522 ± 0.0359
Cross-validation details (10-fold Crossvalidation)
0.1295 ± 0.0279
Cross-validation details (10-fold Crossvalidation)