Run
10457766

Run 10457766

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.pr eprocessing._data.StandardScaler,step_2=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(1)_copyfalse
sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
sklearn.preprocessing._data.StandardScaler(1)_with_stdfalse
sklearn.svm._classes.SVC(4)_C1.7190046488012583e-05
sklearn.svm._classes.SVC(4)_break_tiesfalse
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef010.876851762466366
sklearn.svm._classes.SVC(4)_decision_function_shape"ovo"
sklearn.svm._classes.SVC(4)_degree3
sklearn.svm._classes.SVC(4)_gamma0.02638047565610183
sklearn.svm._classes.SVC(4)_kernel"sigmoid"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilitytrue
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingtrue
sklearn.svm._classes.SVC(4)_tol1.3029790843709484e-05
sklearn.svm._classes.SVC(4)_verbosefalse
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.StandardScaler,step_2=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.StandardScaler,step_2=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.StandardScaler,step_2=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9575 ± 0.0116
Per class
Cross-validation details (10-fold Crossvalidation)
0.8873 ± 0.0216
Per class
Cross-validation details (10-fold Crossvalidation)
0.6545 ± 0.0698
Cross-validation details (10-fold Crossvalidation)
0.6553 ± 0.0569
Cross-validation details (10-fold Crossvalidation)
0.1076 ± 0.0154
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.8962 ± 0.0193
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.8979 ± 0.0225
Per class
Cross-validation details (10-fold Crossvalidation)
0.8962 ± 0.0193
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.3118 ± 0.0449
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.2978 ± 0.0262
Cross-validation details (10-fold Crossvalidation)
0.7171 ± 0.0641
Cross-validation details (10-fold Crossvalidation)
0.7852 ± 0.037
Cross-validation details (10-fold Crossvalidation)