Run
10457395

Run 10457395

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.de composition._truncated_svd.TruncatedSVD,step_2=sklearn.linear_model._stocha stic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.12691357291641225
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon40.15791827371793
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.9049212268206519
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.680643014463505
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1695
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change67
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.8869701075849887
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.8880163208033572
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_algorithm"arpack"
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_components2
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_iter86
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_random_state42
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_tol0.383738333724331
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._truncated_svd.TruncatedSVD,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._truncated_svd.TruncatedSVD,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._truncated_svd.TruncatedSVD,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.1185 ± 0.0224
Per class
Cross-validation details (10-fold Crossvalidation)
0.1827 ± 0.02
Per class
Cross-validation details (10-fold Crossvalidation)
-0.4415 ± 0.0301
Cross-validation details (10-fold Crossvalidation)
-1.8533 ± 0.065
Cross-validation details (10-fold Crossvalidation)
0.859 ± 0.0177
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.141 ± 0.0177
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.2995 ± 0.0242
Per class
Cross-validation details (10-fold Crossvalidation)
0.141 ± 0.0177
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
2.4892 ± 0.0541
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.9268 ± 0.0095
Cross-validation details (10-fold Crossvalidation)
2.2321 ± 0.0272
Cross-validation details (10-fold Crossvalidation)
0.1185 ± 0.0224
Cross-validation details (10-fold Crossvalidation)