Run
10457244

Run 10457244

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_ analysis.FactorAnalysis,step_2=sklearn.linear_model._stochastic_gradient.SG DClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.3177710870755312
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon39.849757936885524
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.5100607540673208
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.20458927861237036
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1298
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change72
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.10530167396786895
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.3081841222696025
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_copyfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_iterated_power25
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_max_iter3602
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_n_components33
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_noise_variance_initnull
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_random_state42
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_svd_method"randomized"
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_tol2.664935959187247
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8818 ± 0.0244
Per class
Cross-validation details (10-fold Crossvalidation)
0.924 ± 0.0123
Per class
Cross-validation details (10-fold Crossvalidation)
0.7777 ± 0.0356
Cross-validation details (10-fold Crossvalidation)
0.75 ± 0.0393
Cross-validation details (10-fold Crossvalidation)
0.0753 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.9247 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.9236 ± 0.0123
Per class
Cross-validation details (10-fold Crossvalidation)
0.9247 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.2181 ± 0.0345
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.2743 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
0.6607 ± 0.051
Cross-validation details (10-fold Crossvalidation)
0.8818 ± 0.0244
Cross-validation details (10-fold Crossvalidation)