Run
10457146

Run 10457146

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative .FeatureAgglomeration,step_2=sklearn.discriminant_analysis.LinearDiscrimina ntAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components120
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkagenull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"svd"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol4.378077632568317e-06
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_affinity"manhattan"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_compute_full_treefalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_connectivitynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_distance_thresholdnull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_linkage"average"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_memorynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_n_clusters2
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_pooling_func{"oml-python:serialized_object": "function", "value": "numpy.amax"}
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative.FeatureAgglomeration,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative.FeatureAgglomeration,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.cluster._agglomerative.FeatureAgglomeration,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9575 ± 0.0179
Per class
Cross-validation details (10-fold Crossvalidation)
0.8104 ± 0.0206
Per class
Cross-validation details (10-fold Crossvalidation)
0.4011 ± 0.0649
Cross-validation details (10-fold Crossvalidation)
0.4294 ± 0.0336
Cross-validation details (10-fold Crossvalidation)
0.1953 ± 0.0093
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.8443 ± 0.0133
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.8657 ± 0.0148
Per class
Cross-validation details (10-fold Crossvalidation)
0.8443 ± 0.0133
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.566 ± 0.0278
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.3299 ± 0.013
Cross-validation details (10-fold Crossvalidation)
0.7945 ± 0.0325
Cross-validation details (10-fold Crossvalidation)
0.6512 ± 0.0283
Cross-validation details (10-fold Crossvalidation)