Run
10456890

Run 10456890

Task 3797 (Supervised Classification) socmob Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.pr eprocessing._data.StandardScaler,step_2=sklearn.discriminant_analysis.Linea rDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(1)_copyfalse
sklearn.preprocessing._data.StandardScaler(1)_with_meanfalse
sklearn.preprocessing._data.StandardScaler(1)_with_stdfalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components390
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.3488790179751661
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"lsqr"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol1.580534141235817e-07
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.StandardScaler,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.StandardScaler,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.StandardScaler,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9619 ± 0.0091
Per class
Cross-validation details (10-fold Crossvalidation)
0.8278 ± 0.0256
Per class
Cross-validation details (10-fold Crossvalidation)
0.4575 ± 0.0852
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0345
Cross-validation details (10-fold Crossvalidation)
0.1699 ± 0.009
Cross-validation details (10-fold Crossvalidation)
0.3451 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.8555 ± 0.0164
Cross-validation details (10-fold Crossvalidation)
1156
Per class
Cross-validation details (10-fold Crossvalidation)
0.8744 ± 0.0142
Per class
Cross-validation details (10-fold Crossvalidation)
0.8555 ± 0.0164
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.4924 ± 0.0266
Cross-validation details (10-fold Crossvalidation)
0.4152 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.3247 ± 0.0142
Cross-validation details (10-fold Crossvalidation)
0.782 ± 0.0355
Cross-validation details (10-fold Crossvalidation)
0.6766 ± 0.0392
Cross-validation details (10-fold Crossvalidation)