Run
10456829

Run 10456829

Task 119 (Learning Curve) zoo Uploaded 19-05-2020 by sri ranga sai
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.22.2.post1.
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(3)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default).
sklearn.ensemble._forest.RandomForestClassifier(3)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(3)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(3)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(3)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(3)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(3)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(3)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(3)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(3)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(3)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(3)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(3)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(3)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(3)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(3)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(3)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(3)_random_state8215
sklearn.ensemble._forest.RandomForestClassifier(3)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(3)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9992 ± 0.0045
Per class
0.9602
Per class
0.9503 ± 0.0809
0.9277 ± 0.0567
0.0231 ± 0.0132
0.2188 ± 0.0049
0.9624 ± 0.0618
1010
Per class
0.9615
Per class
0.9624 ± 0.0618
2.3926 ± 0.137
0.1057 ± 0.0594
0.3294 ± 0.0075
0.0849 ± 0.0408
0.2577 ± 0.1218
0.9007 ± 0.1355