Run
10456610

Run 10456610

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.svm._classes.SVC),step_1=sklearn.linear_model._stochastic_gra dient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.0003326299130888829
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon24.95876681286042
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.136076193007595
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.8468241833449266
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"log"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter36
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change31
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.30612428235321165
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.31894007696108745
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.6375207293766182
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.svm._classes.SVC(4)_C2383.50183229838
sklearn.svm._classes.SVC(4)_break_tiesfalse
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef00.0
sklearn.svm._classes.SVC(4)_decision_function_shape"ovo"
sklearn.svm._classes.SVC(4)_degree3
sklearn.svm._classes.SVC(4)_gamma9.68795498923458e-05
sklearn.svm._classes.SVC(4)_kernel"rbf"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilitytrue
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingtrue
sklearn.svm._classes.SVC(4)_tol0.0007056249021923254
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.svm._classes.SVC),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.svm._classes.SVC),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.svm._classes.SVC),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5097 ± 0.0088
Per class
Cross-validation details (10-fold Crossvalidation)
0.92 ± 0.003
Per class
Cross-validation details (10-fold Crossvalidation)
0.0108 ± 0.0284
Cross-validation details (10-fold Crossvalidation)
0.2189 ± 0.021
Cross-validation details (10-fold Crossvalidation)
0.0552 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9448 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9061 ± 0.0145
Per class
Cross-validation details (10-fold Crossvalidation)
0.9448 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5398 ± 0.0151
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.2349 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
1.0399 ± 0.0136
Cross-validation details (10-fold Crossvalidation)
0.503 ± 0.008
Cross-validation details (10-fold Crossvalidation)