Run
10456251

Run 10456251

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble ._weight_boosting.AdaBoostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree._classes.DecisionTreeClassifier(3)_ccp_alpha0.12429171785572013
sklearn.tree._classes.DecisionTreeClassifier(3)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(3)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(3)_max_depth4
sklearn.tree._classes.DecisionTreeClassifier(3)_max_features0.8756876831537177
sklearn.tree._classes.DecisionTreeClassifier(3)_max_leaf_nodes4373
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_decrease0.020640035930682532
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_leaf0.3354303094607069
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_split0.12230039896642915
sklearn.tree._classes.DecisionTreeClassifier(3)_min_weight_fraction_leaf0.13711778395005597
sklearn.tree._classes.DecisionTreeClassifier(3)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(3)_random_state42
sklearn.tree._classes.DecisionTreeClassifier(3)_splitter"best"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME.R"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate0.06951378241325641
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators639
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9877 ± 0.0096
Per class
Cross-validation details (10-fold Crossvalidation)
0.9754 ± 0.0064
Per class
Cross-validation details (10-fold Crossvalidation)
0.7392 ± 0.0746
Cross-validation details (10-fold Crossvalidation)
-9.0002 ± 0.0928
Cross-validation details (10-fold Crossvalidation)
0.4556 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9775 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9766 ± 0.0058
Per class
Cross-validation details (10-fold Crossvalidation)
0.9775 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
4.457 ± 0.0283
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.4561 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
2.0189 ± 0.0126
Cross-validation details (10-fold Crossvalidation)
0.8129 ± 0.0438
Cross-validation details (10-fold Crossvalidation)