Run
10456241

Run 10456241

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklea rn.ensemble._weight_boosting.AdaBoostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME.R"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate0.06951378241325641
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators639
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha2.850359733921993
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon44.26447616027882
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.28156858475389196
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"perceptron"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1794
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change31
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.1135944004296817
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.12117523465851669
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.04633028279558726
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9877 ± 0.0096
Per class
Cross-validation details (10-fold Crossvalidation)
0.9754 ± 0.0064
Per class
Cross-validation details (10-fold Crossvalidation)
0.7392 ± 0.0746
Cross-validation details (10-fold Crossvalidation)
-9.0002 ± 0.0928
Cross-validation details (10-fold Crossvalidation)
0.4556 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9775 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9766 ± 0.0058
Per class
Cross-validation details (10-fold Crossvalidation)
0.9775 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
4.457 ± 0.0283
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.4561 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
2.0189 ± 0.0126
Cross-validation details (10-fold Crossvalidation)
0.8129 ± 0.0438
Cross-validation details (10-fold Crossvalidation)