Run
10456206

Run 10456206

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,ste p_1=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.svm._classes.SVC(4)_C153.0012658402791
sklearn.svm._classes.SVC(4)_break_tiestrue
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef00.0
sklearn.svm._classes.SVC(4)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(4)_degree3
sklearn.svm._classes.SVC(4)_gamma"scale"
sklearn.svm._classes.SVC(4)_kernel"linear"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilityfalse
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingfalse
sklearn.svm._classes.SVC(4)_tol3.03385422039385e-06
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.preprocessing._data.Normalizer(1)_copyfalse
sklearn.preprocessing._data.Normalizer(1)_norm"l2"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5398 ± 0.0354
Per class
Cross-validation details (10-fold Crossvalidation)
0.9294 ± 0.0074
Per class
Cross-validation details (10-fold Crossvalidation)
0.1387 ± 0.1141
Cross-validation details (10-fold Crossvalidation)
0.2862 ± 0.053
Cross-validation details (10-fold Crossvalidation)
0.0504 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9496 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9442 ± 0.0212
Per class
Cross-validation details (10-fold Crossvalidation)
0.9496 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4933 ± 0.0364
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.2246 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
0.9941 ± 0.0371
Cross-validation details (10-fold Crossvalidation)
0.5398 ± 0.0354
Cross-validation details (10-fold Crossvalidation)