Run
10456198

Run 10456198

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,ste p_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.00026855881312064396
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon35.00502541897767
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.3298925689085493
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.4104212246599265
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"modified_huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter2202
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change40
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.2781312289657011
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.830317298938923
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.37423774100523
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.decomposition._fastica.FastICA(1)_algorithm"deflation"
sklearn.decomposition._fastica.FastICA(1)_fun"cube"
sklearn.decomposition._fastica.FastICA(1)_fun_argsnull
sklearn.decomposition._fastica.FastICA(1)_max_iter760
sklearn.decomposition._fastica.FastICA(1)_n_components5
sklearn.decomposition._fastica.FastICA(1)_random_state42
sklearn.decomposition._fastica.FastICA(1)_tol0.946647981291558
sklearn.decomposition._fastica.FastICA(1)_w_initnull
sklearn.decomposition._fastica.FastICA(1)_whitentrue
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9712 ± 0.0079
Per class
Cross-validation details (10-fold Crossvalidation)
0.7086 ± 0.0203
Per class
Cross-validation details (10-fold Crossvalidation)
0.1312 ± 0.0122
Cross-validation details (10-fold Crossvalidation)
-9.396 ± 0.0962
Cross-validation details (10-fold Crossvalidation)
0.4951 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.6057 ± 0.0247
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9526 ± 0.0007
Per class
Cross-validation details (10-fold Crossvalidation)
0.6057 ± 0.0247
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
4.8439 ± 0.0287
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.4959 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
2.1955 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0131
Cross-validation details (10-fold Crossvalidation)