Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,ste p_1=sklearn.naive_bayes.BernoulliNB)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.naive_bayes.BernoulliNB(11)_alpha | 40.91727664091871 |
sklearn.naive_bayes.BernoulliNB(11)_binarize | 0.0 |
sklearn.naive_bayes.BernoulliNB(11)_class_prior | null |
sklearn.naive_bayes.BernoulliNB(11)_fit_prior | false |
sklearn.decomposition._fastica.FastICA(1)_algorithm | "deflation" |
sklearn.decomposition._fastica.FastICA(1)_fun | "cube" |
sklearn.decomposition._fastica.FastICA(1)_fun_args | null |
sklearn.decomposition._fastica.FastICA(1)_max_iter | 760 |
sklearn.decomposition._fastica.FastICA(1)_n_components | 5 |
sklearn.decomposition._fastica.FastICA(1)_random_state | 42 |
sklearn.decomposition._fastica.FastICA(1)_tol | 0.946647981291558 |
sklearn.decomposition._fastica.FastICA(1)_w_init | null |
sklearn.decomposition._fastica.FastICA(1)_whiten | true |
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.naive_bayes.BernoulliNB)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.naive_bayes.BernoulliNB)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.naive_bayes.BernoulliNB)(1)_verbose | false |
0.9521 ± 0.0187 Per class Cross-validation details (10-fold Crossvalidation)
|
0.8495 ± 0.0272 Per class Cross-validation details (10-fold Crossvalidation)
|
0.2692 ± 0.0405 Cross-validation details (10-fold Crossvalidation)
|
-5.379 ± 0.2586 Cross-validation details (10-fold Crossvalidation)
|
0.2941 ± 0.0153 Cross-validation details (10-fold Crossvalidation)
|
0.1022 ± 0.0006 Cross-validation details (10-fold Crossvalidation)
|
0.795 ± 0.039 Cross-validation details (10-fold Crossvalidation)
|
4839 Per class Cross-validation details (10-fold Crossvalidation) |
0.9538 ± 0.0035 Per class Cross-validation details (10-fold Crossvalidation)
|
0.795 ± 0.039 Cross-validation details (10-fold Crossvalidation)
|
0.3029 ± 0.0027 Cross-validation details (10-fold Crossvalidation)
|
2.877 ± 0.1367 Cross-validation details (10-fold Crossvalidation)
|
0.2259 ± 0.0013 Cross-validation details (10-fold Crossvalidation)
|
0.3791 ± 0.0151 Cross-validation details (10-fold Crossvalidation)
|
1.678 ± 0.0601 Cross-validation details (10-fold Crossvalidation)
|
0.87 ± 0.0246 Cross-validation details (10-fold Crossvalidation)
|