Run
10455865

Run 10455865

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.RobustScaler,s tep_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha2.3623702674933922e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon28.807741307302273
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.672756649321697
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1058
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change57
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.2620814245208253
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.29308160360258206
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.RobustScaler(1)_copyfalse
sklearn.preprocessing._data.RobustScaler(1)_quantile_range[24.275836142495244, 92.52607450557818]
sklearn.preprocessing._data.RobustScaler(1)_with_centeringfalse
sklearn.preprocessing._data.RobustScaler(1)_with_scalingtrue
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.RobustScaler,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.RobustScaler,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.RobustScaler,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5001 ± 0.0003
Per class
Cross-validation details (10-fold Crossvalidation)
0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
-12.3902 ± 0.1249
Cross-validation details (10-fold Crossvalidation)
0.9459 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.0541 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.949
Per class
Cross-validation details (10-fold Crossvalidation)
0.0541 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
9.2532 ± 0.058
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.9726 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
4.3054 ± 0.0254
Cross-validation details (10-fold Crossvalidation)
0.5001 ± 0.0003
Cross-validation details (10-fold Crossvalidation)