Run
10455736

Run 10455736

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_m odel._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree._classes.DecisionTreeClassifier(3)_ccp_alpha0.11095613390509584
sklearn.tree._classes.DecisionTreeClassifier(3)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(3)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(3)_max_depth3
sklearn.tree._classes.DecisionTreeClassifier(3)_max_features0.9471633268481915
sklearn.tree._classes.DecisionTreeClassifier(3)_max_leaf_nodes2645
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_decrease0.01111702995993451
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_leaf0.42641772218510465
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_split0.3694041097562802
sklearn.tree._classes.DecisionTreeClassifier(3)_min_weight_fraction_leaf0.49592629354890727
sklearn.tree._classes.DecisionTreeClassifier(3)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(3)_random_state42
sklearn.tree._classes.DecisionTreeClassifier(3)_splitter"random"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha1.3796393539114783e-07
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon0.4225112546963602
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.8401968659118809
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.8239607179215972
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter227
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change60
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.462314569859855
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.3619220628803573
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.3362 ± 0.0605
Per class
Cross-validation details (10-fold Crossvalidation)
0.721 ± 0.0994
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0953 ± 0.0118
Cross-validation details (10-fold Crossvalidation)
-4.4415 ± 1.8764
Cross-validation details (10-fold Crossvalidation)
0.3844 ± 0.1313
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.6156 ± 0.1313
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.8715 ± 0.015
Per class
Cross-validation details (10-fold Crossvalidation)
0.6156 ± 0.1313
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
3.7603 ± 1.2924
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.62 ± 0.106
Cross-validation details (10-fold Crossvalidation)
2.7446 ± 0.4754
Cross-validation details (10-fold Crossvalidation)
0.3362 ± 0.0605
Cross-validation details (10-fold Crossvalidation)