Run
10455709

Run 10455709

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=skle arn.ensemble._weight_boosting.AdaBoostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate0.3800691502798678
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators633
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.decomposition._pca.PCA(1)_copyfalse
sklearn.decomposition._pca.PCA(1)_iterated_power"auto"
sklearn.decomposition._pca.PCA(1)_n_components4
sklearn.decomposition._pca.PCA(1)_random_state42
sklearn.decomposition._pca.PCA(1)_svd_solver"arpack"
sklearn.decomposition._pca.PCA(1)_tol4.846722496312067
sklearn.decomposition._pca.PCA(1)_whitentrue
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9751 ± 0.0139
Per class
Cross-validation details (10-fold Crossvalidation)
0.9687 ± 0.0089
Per class
Cross-validation details (10-fold Crossvalidation)
0.6772 ± 0.1107
Cross-validation details (10-fold Crossvalidation)
-8.5783 ± 0.1005
Cross-validation details (10-fold Crossvalidation)
0.4189 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9704 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9682 ± 0.0085
Per class
Cross-validation details (10-fold Crossvalidation)
0.9704 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
4.0978 ± 0.0411
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.4212 ± 0.003
Cross-validation details (10-fold Crossvalidation)
1.8645 ± 0.0186
Cross-validation details (10-fold Crossvalidation)
0.8037 ± 0.0737
Cross-validation details (10-fold Crossvalidation)