Run
10455553

Run 10455553

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler ,step_1=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(1)_copyfalse
sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
sklearn.svm._classes.SVC(4)_C0.00021665810340884545
sklearn.svm._classes.SVC(4)_break_tiestrue
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef0-27.349823197487268
sklearn.svm._classes.SVC(4)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(4)_degree4
sklearn.svm._classes.SVC(4)_gamma0.00522579381934621
sklearn.svm._classes.SVC(4)_kernel"poly"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilityfalse
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingtrue
sklearn.svm._classes.SVC(4)_tol0.024316490512369376
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler,step_1=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler,step_1=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler,step_1=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4718 ± 0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0.8925 ± 0.0062
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0567 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
-0.5184 ± 0.1574
Cross-validation details (10-fold Crossvalidation)
0.1073 ± 0.0114
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.8927 ± 0.0114
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.8922 ± 0.0016
Per class
Cross-validation details (10-fold Crossvalidation)
0.8927 ± 0.0114
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
1.0492 ± 0.1095
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.3275 ± 0.0174
Cross-validation details (10-fold Crossvalidation)
1.4498 ± 0.0751
Cross-validation details (10-fold Crossvalidation)
0.4718 ± 0.0059
Cross-validation details (10-fold Crossvalidation)