Run
10455531

Run 10455531

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPC A,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.12118173061479828
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon42.92213858039883
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.35392132001065707
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.7524076550785186
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_loss"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1398
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change23
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.8725868849973392
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.24355784978432476
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_alpha1.0
sklearn.decomposition._kernel_pca.KernelPCA(1)_coef00.12011446609699994
sklearn.decomposition._kernel_pca.KernelPCA(1)_copy_Xfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_degree6
sklearn.decomposition._kernel_pca.KernelPCA(1)_eigen_solver"arpack"
sklearn.decomposition._kernel_pca.KernelPCA(1)_fit_inverse_transformfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_gamma1.7975872352042979e-09
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel"poly"
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel_paramsnull
sklearn.decomposition._kernel_pca.KernelPCA(1)_max_iter726
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_components3
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_jobs1
sklearn.decomposition._kernel_pca.KernelPCA(1)_random_state42
sklearn.decomposition._kernel_pca.KernelPCA(1)_remove_zero_eigtrue
sklearn.decomposition._kernel_pca.KernelPCA(1)_tol0.2717288731832881
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
0.2364 ± 0.0024
Cross-validation details (10-fold Crossvalidation)
0.0539 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9461 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9461 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5277 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.2322 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
1.0281 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)