Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBin sDiscretizer,step_1=sklearn.naive_bayes.MultinomialNB)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.naive_bayes.MultinomialNB(6)_alpha | 0.00025783285413449544 |
sklearn.naive_bayes.MultinomialNB(6)_class_prior | null |
sklearn.naive_bayes.MultinomialNB(6)_fit_prior | true |
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_encode | "onehot-dense" |
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_n_bins | 35 |
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_strategy | "quantile" |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.naive_bayes.MultinomialNB)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.naive_bayes.MultinomialNB)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.naive_bayes.MultinomialNB)(1)_verbose | false |
0.872 ± 0.0304 Per class Cross-validation details (10-fold Crossvalidation)
|
0.9314 ± 0.0063 Per class Cross-validation details (10-fold Crossvalidation)
|
0.1652 ± 0.0863 Cross-validation details (10-fold Crossvalidation)
|
-0.2414 ± 0.0931 Cross-validation details (10-fold Crossvalidation)
|
0.0751 ± 0.0032 Cross-validation details (10-fold Crossvalidation)
|
0.1022 ± 0.0006 Cross-validation details (10-fold Crossvalidation)
|
0.9508 ± 0.0033 Cross-validation details (10-fold Crossvalidation)
|
4839 Per class Cross-validation details (10-fold Crossvalidation) |
0.9496 ± 0.0191 Per class Cross-validation details (10-fold Crossvalidation)
|
0.9508 ± 0.0033 Cross-validation details (10-fold Crossvalidation)
|
0.3029 ± 0.0027 Cross-validation details (10-fold Crossvalidation)
|
0.735 ± 0.0332 Cross-validation details (10-fold Crossvalidation)
|
0.2259 ± 0.0013 Cross-validation details (10-fold Crossvalidation)
|
0.2012 ± 0.0056 Cross-validation details (10-fold Crossvalidation)
|
0.8907 ± 0.0266 Cross-validation details (10-fold Crossvalidation)
|
0.5477 ± 0.0262 Cross-validation details (10-fold Crossvalidation)
|