Run
10455107

Run 10455107

Task 9914 (Supervised Classification) wilt Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBin sDiscretizer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1 )Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate0.00048296095597875937
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators843
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_encode"onehot-dense"
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_n_bins35
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_strategy"quantile"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.5017
Per class
Cross-validation details (10-fold Crossvalidation)
-6.8127 ± 0.0688
Cross-validation details (10-fold Crossvalidation)
0.2939 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9461 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9461 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
2.8749 ± 0.0132
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.3119 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
1.3806 ± 0.0056
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)