Run
10455042

Run 10455042

Task 3735 (Supervised Classification) pollen Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.Trunc atedSVD,step_1=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.svm._classes.SVC(4)_C0.7875941220140072
sklearn.svm._classes.SVC(4)_break_tiesfalse
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef024.39212951510293
sklearn.svm._classes.SVC(4)_decision_function_shape"ovo"
sklearn.svm._classes.SVC(4)_degree3
sklearn.svm._classes.SVC(4)_gamma0.14602436672794777
sklearn.svm._classes.SVC(4)_kernel"sigmoid"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilitytrue
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingfalse
sklearn.svm._classes.SVC(4)_tol0.007075867863144256
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_algorithm"randomized"
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_components1
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_iter30
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_random_state42
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_tol0.0
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5035 ± 0.0188
Per class
Cross-validation details (10-fold Crossvalidation)
0.4002 ± 0.0762
Per class
Cross-validation details (10-fold Crossvalidation)
0.0062 ± 0.0214
Cross-validation details (10-fold Crossvalidation)
0.0001 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5031 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.5099 ± 0.0732
Per class
Cross-validation details (10-fold Crossvalidation)
0.5031 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.9999 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.9999 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.5031 ± 0.0107
Cross-validation details (10-fold Crossvalidation)