Run
10454601

Run 10454601

Task 3735 (Supervised Classification) pollen Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.Fac torAnalysis,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.6711278925721446
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth3
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features1
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes198
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.5124605685201606
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.21989330553599729
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.06978866804057879
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.3805943854048584
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.22811997331399858
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators706
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scoretrue
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_copyfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_iterated_power6
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_max_iter4199
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_n_components3
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_noise_variance_initnull
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_random_state42
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_svd_method"randomized"
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_tol1.460039510511534
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.FactorAnalysis,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.FactorAnalysis,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.FactorAnalysis,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4988
Per class
Cross-validation details (10-fold Crossvalidation)
0.4939
Per class
-0.0021
-0 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.499 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.4989
Per class
0.499 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.499
Cross-validation details (10-fold Crossvalidation)