Run
10454423

Run 10454423

Task 3735 (Supervised Classification) pollen Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=skle arn.ensemble._weight_boosting.AdaBoostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate0.006642719632443994
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators809
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.impute._knn.KNNImputer(1)_add_indicatorfalse
sklearn.impute._knn.KNNImputer(1)_copyfalse
sklearn.impute._knn.KNNImputer(1)_metric"nan_euclidean"
sklearn.impute._knn.KNNImputer(1)_missing_valuesNaN
sklearn.impute._knn.KNNImputer(1)_n_neighbors21
sklearn.impute._knn.KNNImputer(1)_weights"uniform"
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5041 ± 0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0.4254 ± 0.019
Per class
Cross-validation details (10-fold Crossvalidation)
0.0088 ± 0.0104
Cross-validation details (10-fold Crossvalidation)
0.0041 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.4983 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5044 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.5098 ± 0.1009
Per class
Cross-validation details (10-fold Crossvalidation)
0.5044 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.9966 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5014 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
1.0028 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.5044 ± 0.0052
Cross-validation details (10-fold Crossvalidation)