Run
10454321

Run 10454321

Task 3735 (Supervised Classification) pollen Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imput ation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient. SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.10901544335865301
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon22.23047361005364
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.8817380957490297
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.805293538206374
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter2482
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change4
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.9291975039962405
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.7646300446081185
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.03391171374085089
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse
automl.components.data_preprocessing.imputation.ImputationComponent(1)_add_indicatortrue
automl.components.data_preprocessing.imputation.ImputationComponent(1)_missing_valuesNaN
automl.components.data_preprocessing.imputation.ImputationComponent(1)_strategy"mean"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5078 ± 0.0226
Per class
Cross-validation details (10-fold Crossvalidation)
0.5076 ± 0.0229
Per class
Cross-validation details (10-fold Crossvalidation)
0.0156 ± 0.0452
Cross-validation details (10-fold Crossvalidation)
0.0156 ± 0.0452
Cross-validation details (10-fold Crossvalidation)
0.4922 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5078 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.5078 ± 0.0227
Per class
Cross-validation details (10-fold Crossvalidation)
0.5078 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.9844 ± 0.0452
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.7016 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
1.4031 ± 0.0324
Cross-validation details (10-fold Crossvalidation)
0.5078 ± 0.0226
Cross-validation details (10-fold Crossvalidation)