Run
10454302

Run 10454302

Task 3735 (Supervised Classification) pollen Uploaded 19-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.PolynomialFeat ures,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha6.653039584770421e-07
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon12.240443388146234
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.5629850781967283
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.28699279884351075
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"log"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1855
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change13
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.49794552538934367
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.13950139865920538
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.17555967802843753
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.PolynomialFeatures(1)_degree2
sklearn.preprocessing._data.PolynomialFeatures(1)_include_biastrue
sklearn.preprocessing._data.PolynomialFeatures(1)_interaction_onlytrue
sklearn.preprocessing._data.PolynomialFeatures(1)_order"C"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.PolynomialFeatures,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.PolynomialFeatures,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.PolynomialFeatures,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4964 ± 0.0289
Per class
Cross-validation details (10-fold Crossvalidation)
0.489 ± 0.0319
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0088 ± 0.0585
Cross-validation details (10-fold Crossvalidation)
-0.0081 ± 0.0586
Cross-validation details (10-fold Crossvalidation)
0.504 ± 0.0293
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.4956 ± 0.0295
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.4953 ± 0.0333
Per class
Cross-validation details (10-fold Crossvalidation)
0.4956 ± 0.0295
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
1.008 ± 0.0586
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.7098 ± 0.0205
Cross-validation details (10-fold Crossvalidation)
1.4195 ± 0.0409
Cross-validation details (10-fold Crossvalidation)
0.4956 ± 0.0292
Cross-validation details (10-fold Crossvalidation)