Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,ste p_1=sklearn.svm._classes.SVC)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.svm._classes.SVC(4)_C | 16.124222049171717 |
sklearn.svm._classes.SVC(4)_break_ties | false |
sklearn.svm._classes.SVC(4)_cache_size | 200 |
sklearn.svm._classes.SVC(4)_class_weight | null |
sklearn.svm._classes.SVC(4)_coef0 | 0.629159425147634 |
sklearn.svm._classes.SVC(4)_decision_function_shape | "ovr" |
sklearn.svm._classes.SVC(4)_degree | 4 |
sklearn.svm._classes.SVC(4)_gamma | 0.003698413225976257 |
sklearn.svm._classes.SVC(4)_kernel | "poly" |
sklearn.svm._classes.SVC(4)_max_iter | -1 |
sklearn.svm._classes.SVC(4)_probability | false |
sklearn.svm._classes.SVC(4)_random_state | 42 |
sklearn.svm._classes.SVC(4)_shrinking | true |
sklearn.svm._classes.SVC(4)_tol | 0.012493188997624582 |
sklearn.svm._classes.SVC(4)_verbose | false |
sklearn.preprocessing._data.Normalizer(1)_copy | false |
sklearn.preprocessing._data.Normalizer(1)_norm | "l1" |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.svm._classes.SVC)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.svm._classes.SVC)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.svm._classes.SVC)(1)_verbose | false |
0.4948 ± 0.0206 Per class Cross-validation details (10-fold Crossvalidation)
|
0.4948 ± 0.0475 Per class Cross-validation details (10-fold Crossvalidation)
|
-0.0104 ± 0.0411 Cross-validation details (10-fold Crossvalidation)
|
-0.0104 ± 0.0409 Cross-validation details (10-fold Crossvalidation)
|
0.5052 ± 0.0204 Cross-validation details (10-fold Crossvalidation)
|
0.5 Cross-validation details (10-fold Crossvalidation)
|
0.4948 ± 0.0204 Cross-validation details (10-fold Crossvalidation)
|
3848 Per class Cross-validation details (10-fold Crossvalidation) |
0.4948 ± 0.0539 Per class Cross-validation details (10-fold Crossvalidation)
|
0.4948 ± 0.0204 Cross-validation details (10-fold Crossvalidation)
|
1 Cross-validation details (10-fold Crossvalidation)
|
1.0104 ± 0.0409 Cross-validation details (10-fold Crossvalidation)
|
0.5 Cross-validation details (10-fold Crossvalidation)
|
0.7108 ± 0.0143 Cross-validation details (10-fold Crossvalidation)
|
1.4215 ± 0.0286 Cross-validation details (10-fold Crossvalidation)
|
0.4948 ± 0.0206 Cross-validation details (10-fold Crossvalidation)
|