Run
10454193

Run 10454193

Task 3735 (Supervised Classification) pollen Uploaded 18-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscrimin antAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components31
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkagenull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"svd"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.0012911119901166833
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_percentile82.42842516532346
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._mutual_info.mutual_info_classif"}

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4958 ± 0.0233
Per class
Cross-validation details (10-fold Crossvalidation)
0.4984 ± 0.0263
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0031 ± 0.0526
Cross-validation details (10-fold Crossvalidation)
-0.0002 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.5001 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.4984 ± 0.0263
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.4984 ± 0.0264
Per class
Cross-validation details (10-fold Crossvalidation)
0.4984 ± 0.0263
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
1.0002 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5003 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
1.0005 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.4984 ± 0.0263
Cross-validation details (10-fold Crossvalidation)