Run
10454127

Run 10454127

Task 3735 (Supervised Classification) pollen Uploaded 18-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imput ation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient. SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.4766163200402427
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon34.0565041921097
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.6038905364952694
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.26468636799434875
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter365
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change73
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.17047141156316206
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.019678067976477625
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.35171432191814045
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse
automl.components.data_preprocessing.imputation.ImputationComponent(1)_add_indicatortrue
automl.components.data_preprocessing.imputation.ImputationComponent(1)_missing_valuesNaN
automl.components.data_preprocessing.imputation.ImputationComponent(1)_strategy"most_frequent"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4995 ± 0.02
Per class
Cross-validation details (10-fold Crossvalidation)
0.4991 ± 0.02
Per class
Cross-validation details (10-fold Crossvalidation)
-0.001 ± 0.0401
Cross-validation details (10-fold Crossvalidation)
-0.001 ± 0.0401
Cross-validation details (10-fold Crossvalidation)
0.5005 ± 0.0201
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0.0201
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0.0202
Per class
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0.0201
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
1.001 ± 0.0401
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.7075 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
1.4149 ± 0.0282
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0.02
Cross-validation details (10-fold Crossvalidation)