Run
10454126

Run 10454126

Task 3735 (Supervised Classification) pollen Uploaded 18-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.Fac torAnalysis,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosti ng.HistGradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization1.2998479432795414e-06
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.8039890723031968
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins178
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth2
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter361
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes1224
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf906
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change61
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"recall_micro"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.24802225936614877
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.25065797650439975
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_copyfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_iterated_power34
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_max_iter4920
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_n_components1
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_noise_variance_initnull
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_random_state42
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_svd_method"randomized"
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_tol4.278847204651663
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.FactorAnalysis,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.FactorAnalysis,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._factor_analysis.FactorAnalysis,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4884 ± 0.0301
Per class
Cross-validation details (10-fold Crossvalidation)
0.4634 ± 0.029
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0042 ± 0.0512
Cross-validation details (10-fold Crossvalidation)
-0.0007 ± 0.0043
Cross-validation details (10-fold Crossvalidation)
0.5003 ± 0.0016
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.4979 ± 0.0258
Cross-validation details (10-fold Crossvalidation)
3848
Per class
Cross-validation details (10-fold Crossvalidation)
0.4972 ± 0.0415
Per class
Cross-validation details (10-fold Crossvalidation)
0.4979 ± 0.0258
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
1.0005 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.5009 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
1.0019 ± 0.0034
Cross-validation details (10-fold Crossvalidation)
0.4979 ± 0.0256
Cross-validation details (10-fold Crossvalidation)