Run
10454047

Run 10454047

Task 53 (Supervised Classification) vehicle Uploaded 18-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClass ifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.952934176502541
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth2
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features5
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes153
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.5630015600843525
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.6888904449617
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.24582827023785672
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.2967266707464488
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.26310304462506207
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators357
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.4946
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0027
0.0012 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3749 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3748 ± 0
Cross-validation details (10-fold Crossvalidation)
0.2553 ± 0.0046
Cross-validation details (10-fold Crossvalidation)
846
Per class
Cross-validation details (10-fold Crossvalidation)
0.2553 ± 0.0046
Cross-validation details (10-fold Crossvalidation)
1.9991 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
1.0001 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4329 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4329 ± 0
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.248
Cross-validation details (10-fold Crossvalidation)