Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1)_verbose | false |
sklearn.svm._classes.SVC(4)_C | 1.5072283273054584e-07 |
sklearn.svm._classes.SVC(4)_break_ties | false |
sklearn.svm._classes.SVC(4)_cache_size | 200 |
sklearn.svm._classes.SVC(4)_class_weight | null |
sklearn.svm._classes.SVC(4)_coef0 | -21.337730807926995 |
sklearn.svm._classes.SVC(4)_decision_function_shape | "ovr" |
sklearn.svm._classes.SVC(4)_degree | 3 |
sklearn.svm._classes.SVC(4)_gamma | 0.00017844664448872835 |
sklearn.svm._classes.SVC(4)_kernel | "poly" |
sklearn.svm._classes.SVC(4)_max_iter | -1 |
sklearn.svm._classes.SVC(4)_probability | true |
sklearn.svm._classes.SVC(4)_random_state | 42 |
sklearn.svm._classes.SVC(4)_shrinking | false |
sklearn.svm._classes.SVC(4)_tol | 3.3072431565725105e-06 |
sklearn.svm._classes.SVC(4)_verbose | false |
0.6449 ± 0.0277 Per class Cross-validation details (10-fold Crossvalidation)
|
0.3066 ± 0.0248 Per class Cross-validation details (10-fold Crossvalidation)
|
0.1405 ± 0.0542 Cross-validation details (10-fold Crossvalidation)
|
0.152 ± 0.0194 Cross-validation details (10-fold Crossvalidation)
|
0.3452 ± 0.0051 Cross-validation details (10-fold Crossvalidation)
|
0.3748 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.3534 ± 0.0399 Cross-validation details (10-fold Crossvalidation)
|
846 Per class Cross-validation details (10-fold Crossvalidation) |
0.3614 ± 0.0414 Per class Cross-validation details (10-fold Crossvalidation)
|
0.3534 ± 0.0399 Cross-validation details (10-fold Crossvalidation)
|
1.9991 ± 0.0004 Cross-validation details (10-fold Crossvalidation)
|
0.921 ± 0.0135 Cross-validation details (10-fold Crossvalidation)
|
0.4329 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.4155 ± 0.0055 Cross-validation details (10-fold Crossvalidation)
|
0.9598 ± 0.0127 Cross-validation details (10-fold Crossvalidation)
|
0.3584 ± 0.0422 Cross-validation details (10-fold Crossvalidation)
|