Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.svm._classes.SVC)(1)_verbose | false |
sklearn.svm._classes.SVC(4)_C | 0.001003962707814457 |
sklearn.svm._classes.SVC(4)_break_ties | true |
sklearn.svm._classes.SVC(4)_cache_size | 200 |
sklearn.svm._classes.SVC(4)_class_weight | null |
sklearn.svm._classes.SVC(4)_coef0 | 0.0 |
sklearn.svm._classes.SVC(4)_decision_function_shape | "ovr" |
sklearn.svm._classes.SVC(4)_degree | 3 |
sklearn.svm._classes.SVC(4)_gamma | "scale" |
sklearn.svm._classes.SVC(4)_kernel | "linear" |
sklearn.svm._classes.SVC(4)_max_iter | -1 |
sklearn.svm._classes.SVC(4)_probability | true |
sklearn.svm._classes.SVC(4)_random_state | 42 |
sklearn.svm._classes.SVC(4)_shrinking | true |
sklearn.svm._classes.SVC(4)_tol | 0.009837933059472675 |
sklearn.svm._classes.SVC(4)_verbose | false |
0.9265 ± 0.0203 Per class Cross-validation details (10-fold Crossvalidation)
|
0.758 ± 0.0437 Per class Cross-validation details (10-fold Crossvalidation)
|
0.6831 ± 0.0567 Cross-validation details (10-fold Crossvalidation)
|
0.6531 ± 0.0318 Cross-validation details (10-fold Crossvalidation)
|
0.1658 ± 0.0122 Cross-validation details (10-fold Crossvalidation)
|
0.3748 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.7624 ± 0.0424 Cross-validation details (10-fold Crossvalidation)
|
846 Per class Cross-validation details (10-fold Crossvalidation) |
0.7547 ± 0.0444 Per class Cross-validation details (10-fold Crossvalidation)
|
0.7624 ± 0.0424 Cross-validation details (10-fold Crossvalidation)
|
1.9991 ± 0.0004 Cross-validation details (10-fold Crossvalidation)
|
0.4424 ± 0.0324 Cross-validation details (10-fold Crossvalidation)
|
0.4329 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.2803 ± 0.017 Cross-validation details (10-fold Crossvalidation)
|
0.6475 ± 0.0393 Cross-validation details (10-fold Crossvalidation)
|
0.7654 ± 0.0437 Cross-validation details (10-fold Crossvalidation)
|