Run
10453788

Run 10453788

Task 146821 (Supervised Classification) car Uploaded 18-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochast ic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.026191197806213627
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon4.854151362320165
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.3658364571547256
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.6579968960249071
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"modified_huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1278
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change63
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.44369176815127725
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.06093356772883768
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.905661814792475
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.503 ± 0.0199
Per class
Cross-validation details (10-fold Crossvalidation)
-0.008 ± 0.0201
Cross-validation details (10-fold Crossvalidation)
-0.6705 ± 0.0362
Cross-validation details (10-fold Crossvalidation)
0.4358 ± 0.0169
Cross-validation details (10-fold Crossvalidation)
0.229 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.2922 ± 0.0871
Cross-validation details (10-fold Crossvalidation)
1728
Per class
Cross-validation details (10-fold Crossvalidation)
0.2922 ± 0.0871
Cross-validation details (10-fold Crossvalidation)
1.2058 ± 0.0088
Cross-validation details (10-fold Crossvalidation)
1.9031 ± 0.0726
Cross-validation details (10-fold Crossvalidation)
0.3381 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.5183 ± 0.02
Cross-validation details (10-fold Crossvalidation)
1.5329 ± 0.0581
Cross-validation details (10-fold Crossvalidation)
0.2381 ± 0.0106
Cross-validation details (10-fold Crossvalidation)