Run
10453622

Run 10453622

Task 146821 (Supervised Classification) car Uploaded 18-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochast ic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha2.8930128899757403e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon0.2787389369562728
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.7651272651883123
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.4406698072207126
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"perceptron"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter658
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change6
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.11126795464888213
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.0678945050931936
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8016 ± 0.0343
Per class
Cross-validation details (10-fold Crossvalidation)
0.813 ± 0.0293
Per class
Cross-validation details (10-fold Crossvalidation)
0.5867 ± 0.063
Cross-validation details (10-fold Crossvalidation)
0.5498 ± 0.068
Cross-validation details (10-fold Crossvalidation)
0.0903 ± 0.0145
Cross-validation details (10-fold Crossvalidation)
0.229 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.8194 ± 0.0291
Cross-validation details (10-fold Crossvalidation)
1728
Per class
Cross-validation details (10-fold Crossvalidation)
0.8117 ± 0.0282
Per class
Cross-validation details (10-fold Crossvalidation)
0.8194 ± 0.0291
Cross-validation details (10-fold Crossvalidation)
1.2058 ± 0.0088
Cross-validation details (10-fold Crossvalidation)
0.3943 ± 0.0627
Cross-validation details (10-fold Crossvalidation)
0.3381 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.3005 ± 0.0237
Cross-validation details (10-fold Crossvalidation)
0.8886 ± 0.0682
Cross-validation details (10-fold Crossvalidation)
0.5945 ± 0.0725
Cross-validation details (10-fold Crossvalidation)